
Package: cloudfs (via r-universe)
September 13, 2024

Title Streamlined Interface to Interact with Cloud Storage Platforms

Version 0.1.3

Description A unified interface for simplifying cloud storage
interactions, including uploading, downloading, reading, and
writing files, with functions for both 'Google Drive'
(<https://www.google.com/drive/>) and 'Amazon S3'
(<https://aws.amazon.com/s3/>).

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Imports aws.s3, googledrive, desc, dplyr, cli, utils, rlang, glue,
httr

Suggests googlesheets4, haven, jsonlite, knitr, readr, readxl,
rmarkdown, testthat (>= 3.0.0), withr, writexl, xml2

VignetteBuilder knitr

Config/testthat/edition 3

URL https://g6t.github.io/cloudfs/, https://github.com/g6t/cloudfs

BugReports https://github.com/g6t/cloudfs/issues

Repository https://g6t.r-universe.dev

RemoteUrl https://github.com/g6t/cloudfs

RemoteRef HEAD

RemoteSha 811ae7ceb79b1a46f467eae81be24d07859ebe99

Contents
cloud_drive_attach . 2
cloud_drive_browse . 3
cloud_drive_download . 4
cloud_drive_download_bulk . 5

1

https://www.google.com/drive/
https://aws.amazon.com/s3/
https://g6t.github.io/cloudfs/
https://github.com/g6t/cloudfs
https://github.com/g6t/cloudfs/issues

2 cloud_drive_attach

cloud_drive_ls . 5
cloud_drive_read . 6
cloud_drive_read_bulk . 8
cloud_drive_spreadsheet_autofit . 9
cloud_drive_upload . 9
cloud_drive_upload_bulk . 10
cloud_drive_write . 11
cloud_drive_write_bulk . 13
cloud_get_roots . 14
cloud_local_ls . 15
cloud_object_ls . 16
cloud_read_excel . 17
cloud_s3_attach . 17
cloud_s3_browse . 18
cloud_s3_download . 19
cloud_s3_download_bulk . 19
cloud_s3_ls . 20
cloud_s3_read . 21
cloud_s3_read_bulk . 22
cloud_s3_upload . 23
cloud_s3_upload_bulk . 24
cloud_s3_write . 25
cloud_s3_write_bulk . 26

Index 28

cloud_drive_attach Attach Google Drive folder to project

Description

This function facilitates the association of a specific Google Drive folder with a project by adding
a unique identifier to the project’s DESCRIPTION file. The user is prompted to navigate to the
Google Drive website, select or create the desired folder for the project, and then provide its URL.
The function extracts the necessary information from the URL and updates the cloudfs.drive
field in the DESCRIPTION file accordingly.

Usage

cloud_drive_attach(project = ".")

Arguments

project Character. Path to a project. By default it is current working directory.

Value

This function does not return a meaningful value. Its primary purpose is the side effect of updating
the project’s DESCRIPTION file with the associated Google Drive folder identifier.

cloud_drive_browse 3

Examples

cloud_drive_attach()

cloud_drive_browse Browse project’s Google Drive folder

Description

Opens project’s Google Drive folder in browser.

Usage

cloud_drive_browse(path = "", root = NULL)

Arguments

path (optional) Path inside the Google Drive folder to open. Defaults to the root level
(path = "") of the project’s folder.

root Google Drive ID or URL of the project root. This serves as the reference point
for all relative paths. When left as NULL, the root is automatically derived from
the cloudfs.drive field of the project’s DESCRIPTION file.

Details

Google Drive file structure is different from the usual file structure like e.g. on Linux or Windows.
A folder on Google Drive can have two or more child folders with the same name. Google Drive
marks files and folders with so-called id values to distinguish between them. These values are
always unique. You can see them in browser URL for example. The concept of "name" is in the
first place for convenience of the end user.

In such a setup a relative file path may correspond to multiple files or folders. This function however
works under assumption that the relative path you pass to it defines strictly one object. If there’s
any ambiguity it throws an error.

Value

Invisibly returns NULL. The primary purpose of this function is its side effect: opening the specified
Google Drive folder in a browser.

Examples

cloud_drive_browse()
cloud_drive_browse("models/kmeans")

4 cloud_drive_download

cloud_drive_download Download a file from Google Drive to the local project folder

Description

Retrieves a file from the project’s Google Drive folder and saves it to the local project folder, main-
taining the original folder structure.

Usage

cloud_drive_download(file, root = NULL)

Arguments

file Path to a file relative to project folder root. Can contain only letters, digits, ’-’,
’_’, ’.’, spaces and ’/’ symbols.

root Google Drive ID or URL of the project root. This serves as the reference point
for all relative paths. When left as NULL, the root is automatically derived from
the cloudfs.drive field of the project’s DESCRIPTION file.

Details

Google Drive file structure is different from the usual file structure like e.g. on Linux or Windows.
A folder on Google Drive can have two or more child folders with the same name. Google Drive
marks files and folders with so-called id values to distinguish between them. These values are
always unique. You can see them in browser URL for example. The concept of "name" is in the
first place for convenience of the end user.

In such a setup a relative file path may correspond to multiple files or folders. This function however
works under assumption that the relative path you pass to it defines strictly one object. If there’s
any ambiguity it throws an error.

Value

Invisibly returns NULL after successfully downloading the file.

Examples

downloads toy_data/demo.csv from project's Google Drive folder
(provided it exists) and saves it to local 'toy_data' folder
cloud_drive_download("toy_data/demo.csv")

clean up
unlink("toy_data", recursive = TRUE)

cloud_drive_download_bulk 5

cloud_drive_download_bulk

Bulk download contents from Google Drive

Description

Downloads multiple files from a Google Drive folder based on the output dataframe from cloud_drive_ls.
This function streamlines the process of downloading multiple files by allowing you to filter and
select specific files from the Google Drive listing and then download them in bulk.

Usage

cloud_drive_download_bulk(content, quiet = FALSE)

Arguments

content (data.frame) Output of cloud_drive_ls()

quiet All caution messages may be turned off by setting this parameter to TRUE.

Value

Invisibly returns the input content dataframe.

Examples

provided there's a folder called "toy_data" in the root of your project's
Google Drive folder, and this folder contains "csv" files
cloud_drive_ls("toy_data") |>

filter(type == "csv") |>
cloud_drive_download_bulk()

clean up
unlink("toy_data", recursive = TRUE)

cloud_drive_ls List Contents of Project’s Google Drive Folder

Description

Returns a tibble with names, timestamps, and sizes of files and folders inside the specified Google
Drive folder.

Usage

cloud_drive_ls(path = "", recursive = FALSE, full_names = FALSE, root = NULL)

6 cloud_drive_read

Arguments

path (optional) Path inside the Google Drive root folder. Specifies the subfolder
whose contents should be listed. By default, when path = "", lists root-level
files and folders.

recursive (logical) If TRUE, lists contents recursively in all nested subfolders. Default is
FALSE.

full_names (logical) If TRUE, folder path is appended to object names to give a relative file
path.

root Google Drive ID or URL of the project root. This serves as the reference point
for all relative paths. When left as NULL, the root is automatically derived from
the cloudfs.drive field of the project’s DESCRIPTION file.

Details

Google Drive file structure is different from the usual file structure like e.g. on Linux or Windows.
A folder on Google Drive can have two or more child folders with the same name. Google Drive
marks files and folders with so-called id values to distinguish between them. These values are
always unique. You can see them in browser URL for example. The concept of "name" is in the
first place for convenience of the end user.

In such a setup a relative file path may correspond to multiple files or folders. This function however
works under assumption that the relative path you pass to it defines strictly one object. If there’s
any ambiguity it throws an error.

Value

A tibble containing the names, last modification timestamps, sizes in bytes, and Google Drive IDs
of files and folders inside the specified Google Drive folder.

Examples

list only root-level files and folders
cloud_drive_ls()

list all files in all nested folders
cloud_drive_ls(recursive = TRUE)

list contents of "plots/barplots" subfolder
cloud_drive_ls("plots/barplots")

cloud_drive_read Read a file from Google Drive

Description

Retrieves and reads a file from the project’s Google Drive folder. By default, the function attempts to
determine the appropriate reading function based on the file’s extension. However, you can specify
a custom reading function if necessary.

cloud_drive_read 7

Usage

cloud_drive_read(file, fun = NULL, ..., root = NULL)

Arguments

file Path to a file relative to project folder root. Can contain only letters, digits, ’-’,
’_’, ’.’, spaces and ’/’ symbols.

fun A custom reading function. If NULL (default), the appropriate reading function
will be inferred based on the file’s extension.

... Additional arguments to pass to the reading function fun.

root Google Drive ID or URL of the project root. This serves as the reference point
for all relative paths. When left as NULL, the root is automatically derived from
the cloudfs.drive field of the project’s DESCRIPTION file.

Value

The content of the file read from Google Drive, with additional attributes containing metadata about
the file.

Default reading functions

Here’s how we identify a reading function based on file extension

• .csv: readr::read_csv

• .json: jsonlite::read_json

• .rds: base::readRDS

• .sav: haven::read_sav

• .xls: cloud_read_excel

• .xlsx: cloud_read_excel

• .xml: xml2::read_xml

Examples

provided there are folders called "data" and "models" in the root of your
project's main Google Drive folder and they contain the files mentioned
below
cloud_drive_read("data/mtcars.csv")
cloud_drive_read("models/random_forest.rds")
cloud_drive_read("data/dm.sas7bdat", fun = haven::read_sas)

8 cloud_drive_read_bulk

cloud_drive_read_bulk Bulk Read Contents from Google Drive

Description

This function facilitates the bulk reading of multiple files from the project’s designated Google
Drive folder. By using cloud_drive_ls, you can obtain a dataframe detailing the contents of the
Google Drive folder. Applying cloud_drive_read_bulk to this dataframe allows you to read all
listed files into a named list. The function will, by default, infer the appropriate reading method
based on each file’s extension. However, if a specific reading function is provided via the fun
parameter, it will be applied uniformly to all files, which may not be suitable for diverse file types.

Usage

cloud_drive_read_bulk(content, fun = NULL, ..., quiet = FALSE)

Arguments

content (data.frame) Output of cloud_drive_ls()

fun A custom reading function. If NULL (default), the appropriate reading function
will be inferred based on the file’s extension.

... Additional arguments to pass to the reading function fun.

quiet All caution messages may be turned off by setting this parameter to TRUE.

Value

A named list where each element corresponds to the content of a file from Google Drive. The names
of the list elements are derived from the file names.

Examples

provided there's a folder called "data" in the root of the project's main
Google Drive folder, and it contains csv files
data_lst <-

cloud_drive_ls("data") |>
filter(type == "csv") |>
cloud_drive_read_bulk()

cloud_drive_spreadsheet_autofit 9

cloud_drive_spreadsheet_autofit

Automatically resize all columns in a google spreadsheet

Description

Finds the spreadsheet by path relative to a project root. Applies googlesheets4::range_autofit()
to each sheet.

Usage

cloud_drive_spreadsheet_autofit(file, root = NULL)

Arguments

file Path to a file relative to project folder root. Can contain only letters, digits, ’-’,
’_’, ’.’, spaces and ’/’ symbols.

root Google Drive ID or URL of the project root. This serves as the reference point
for all relative paths. When left as NULL, the root is automatically derived from
the cloudfs.drive field of the project’s DESCRIPTION file.

Value

The file ID of the resized Google spreadsheet as an invisible result.

Examples

cloud_drive_write(mtcars, "results/mtcars.xlsx")
cloud_drive_spreadsheet_autofit("results/mtcars.xlsx")

cloud_drive_upload Upload a local file to Google Drive

Description

Uploads a local file from the project’s directory to its corresponding location within the project’s
Google Drive root folder.

Usage

cloud_drive_upload(file, root = NULL)

10 cloud_drive_upload_bulk

Arguments

file Path to a file relative to project folder root. Can contain only letters, digits, ’-’,
’_’, ’.’, spaces and ’/’ symbols.

root Google Drive ID or URL of the project root. This serves as the reference point
for all relative paths. When left as NULL, the root is automatically derived from
the cloudfs.drive field of the project’s DESCRIPTION file.

Details

Google Drive file structure is different from the usual file structure like e.g. on Linux or Windows.
A folder on Google Drive can have two or more child folders with the same name. Google Drive
marks files and folders with so-called id values to distinguish between them. These values are
always unique. You can see them in browser URL for example. The concept of "name" is in the
first place for convenience of the end user.

In such a setup a relative file path may correspond to multiple files or folders. This function however
works under assumption that the relative path you pass to it defines strictly one object. If there’s
any ambiguity it throws an error.

Value

Invisibly returns a googledrive::dribble object representing the uploaded file on Google Drive.

Examples

create a toy csv file
dir.create("toy_data")
write.csv(mtcars, "toy_data/mtcars.csv")

uploads toy_data/mtcars.csv to 'data' subfolder of project's
Google Drive folder
cloud_drive_upload("toy_data/mtcars.csv")

clean up
unlink("toy_data", recursive = TRUE)

cloud_drive_upload_bulk

Bulk Upload Files to Google Drive

Description

This function streamlines the process of uploading multiple files from the local project folder to
the project’s designated Google Drive folder. By using cloud_local_ls, you can obtain a dataframe
detailing the contents of the local folder. Applying cloud_drive_upload_bulk to this dataframe
allows you to upload all listed files to Google Drive.

cloud_drive_write 11

Usage

cloud_drive_upload_bulk(content, quiet = FALSE, root = NULL)

Arguments

content (data.frame) Output of cloud_s3_ls()

quiet All caution messages may be turned off by setting this parameter to TRUE.

root Google Drive ID or URL of the project root. This serves as the reference point
for all relative paths. When left as NULL, the root is automatically derived from
the cloudfs.drive field of the project’s DESCRIPTION file.

Value

Invisibly returns the input content dataframe.

Examples

create toy plots: 2 png's and 1 jpeg
dir.create("toy_plots")
png("toy_plots/plot1.png"); plot(rnorm(100)); dev.off()
png("toy_plots/plot2.png"); plot(hist(rnorm(100))); dev.off()
png("toy_plots/plot3.jpeg"); plot(hclust(dist(USArrests), "ave")); dev.off()

upload only the two png's
cloud_local_ls("toy_plots") |>

dplyr::filter(type == "png") |>
cloud_drive_upload_bulk()

clean up
unlink("toy_plots", recursive = TRUE)

cloud_drive_write Write an object to Google Drive

Description

Saves an R object to a designated location in the project’s Google Drive folder. If no custom
writing function is provided, the function will infer the appropriate writing method based on the
file’s extension.

Usage

cloud_drive_write(x, file, fun = NULL, ..., local = FALSE, root = NULL)

12 cloud_drive_write

Arguments

x An R object to be written to Google Drive.

file Path to a file relative to project folder root. Can contain only letters, digits, ’-’,
’_’, ’.’, spaces and ’/’ symbols.

fun A custom writing function. If NULL (default), the appropriate writing function
will be inferred based on the file’s extension.

... Additional arguments to pass to the writing function fun.

local Logical, defaulting to FALSE. If TRUE, the function will also create a local copy
of the file at the specified path. Note that some writing functions might not over-
write existing files unless explicitly allowed. Typically, such functions have a
parameter (often named overwrite) to control this behavior. Check the docu-
mentation of the writing function used to determine the exact parameter name
and pass it through the ... argument if necessary. Alternatively, you can define
an anonymous function for fun that calls a writing function with the overwriting
option enabled.

root Google Drive ID or URL of the project root. This serves as the reference point
for all relative paths. When left as NULL, the root is automatically derived from
the cloudfs.drive field of the project’s DESCRIPTION file.

Value

Invisibly returns a googledrive::dribble object representing the written file on Google Drive.

Default writing functions

Here’s how we identify a writing function based on file extension

• .csv: readr::write_csv

• .json: jsonlite::write_json

• .rds: base::saveRDS

• .xls: writexl::write_xlsx

• .xlsx: writexl::write_xlsx

• .sav: haven::write_sav

• .xml: xml2::write_xml

Examples

write mtcars dataframe to mtcars.csv in data folder
cloud_drive_write(mtcars, "data/mtcars.csv")
cloud_drive_write(random_forest, "models/random_forest.rds")

provide custom writing function with parameters
cloud_drive_write(c("one", "two"), "text/count.txt", writeLines, sep = "\n\n")

cloud_drive_write_bulk 13

cloud_drive_write_bulk

Write multiple objects to Google Drive in bulk

Description

This function allows for the bulk writing of multiple R objects to the project’s designated Google
Drive folder. To prepare a list of objects for writing, use cloud_object_ls, which generates a
dataframe listing the objects and their intended destinations in a format akin to the output of
cloud_drive_ls. By default, the function determines the appropriate writing method based on each
file’s extension. However, if a specific writing function is provided via the fun parameter, it will be
applied to all files, which may not be ideal if dealing with a variety of file types.

Usage

cloud_drive_write_bulk(
content,
fun = NULL,
...,
local = FALSE,
quiet = FALSE,
root = NULL

)

Arguments

content (data.frame) output of cloud_object_ls()

fun A custom writing function. If NULL (default), the appropriate writing function
will be inferred based on the file’s extension.

... Additional arguments to pass to the writing function fun.

local Logical, defaulting to FALSE. If TRUE, the function will also create a local copy
of the file at the specified path. Note that some writing functions might not over-
write existing files unless explicitly allowed. Typically, such functions have a
parameter (often named overwrite) to control this behavior. Check the docu-
mentation of the writing function used to determine the exact parameter name
and pass it through the ... argument if necessary. Alternatively, you can define
an anonymous function for fun that calls a writing function with the overwriting
option enabled.

quiet all caution messages may be turned off by setting this parameter to TRUE.

root Google Drive ID or URL of the project root. This serves as the reference point
for all relative paths. When left as NULL, the root is automatically derived from
the cloudfs.drive field of the project’s DESCRIPTION file.

Value

Invisibly returns the input content dataframe.

14 cloud_get_roots

Examples

write two csv files: data/df_mtcars.csv and data/df_iris.csv
cloud_object_ls(

dplyr::lst(mtcars = mtcars, iris = iris),
path = "data",
extension = "csv",
prefix = "df_"

) |>
cloud_drive_write_bulk()

cloud_get_roots Get cloud roots of a project

Description

Returns a list with all cloudfs.* roots defined in a project’s DESCRIPTION.

Usage

cloud_get_roots(project = ".")

Arguments

project Character. Path to a project. By default it is current working directory.

Value

A named list where each element corresponds to a cloudfs.* root defined in the project’s DE-
SCRIPTION file. The names of the list elements are derived from the cloudfs.* fields by removing
the cloudfs. prefix.

Examples

create a temp. folder, and put DESCRIPTION file with cloudfs.* fields into it
tmp_project <- file.path(tempdir(), "cloudfs")
if (!dir.exists(tmp_project)) dir.create(tmp_project)
tmp_project_desc <- file.path(tmp_project, "DESCRIPTION")
desc_content <- c(

"Package: -",
"cloudfs.s3: my_bucket/my_project",
"cloudfs.drive: aaaaaa"

)
writeLines(desc_content, tmp_project_desc)

roots <- cloud_get_roots(tmp_project)
roots

cloud_local_ls 15

cloud_local_ls List Contents of local project folder

Description

Retrieves names, timestamps, and sizes of files and folders inside local project folder.

Usage

cloud_local_ls(
path = "",
root = ".",
recursive = FALSE,
full_names = FALSE,
ignore = TRUE

)

Arguments

path (optional) Path, relative to the specified root to list contents of. By default, when
path = "", lists root-level files and folders.

root Local directory path relative to which all other paths are considered.

recursive (logical) If TRUE, lists contents recursively in all nested subfolders. Default is
FALSE.

full_names (logical) If TRUE, folder path is appended to object names to give a relative file
path.

ignore Logical flag indicating whether to ignore certain directories. Currently, if set to
TRUE, the ’renv’ folder is ignored due to its typically large size. This parameter
may be expanded in the future to support more complex ignore patterns.

Value

A tibble containing the names, last modification timestamps, and sizes in bytes of files and folders
inside the specified local folder.

Examples

list only root-level files and folders
cloud_local_ls()

list all files in all nested folders
cloud_local_ls(recursive = TRUE)

Not run:
list contents of "plots/barplots" subfolder (if it exists)
cloud_local_ls("plots/barplots")

16 cloud_object_ls

End(Not run)

cloud_object_ls Prepare a dataframe for bulk writing of objects to cloud

Description
cloud_*_ls functions for cloud locations (e.g. cloud_s3_ls) return content dataframes which can
then be passed to cloud_*_read_bulk and cloud_*_download_bulk functions to read/download
multiple files at once. In a similar manner, this function accepts a list of objects as an input and
produces a dataframe which can then be passed to cloud_*_write_bulk functions to write multiple
files at once.

Usage

cloud_object_ls(x, path, extension, prefix = "", suffix = "")

Arguments

x A named list. Names may contain letters, digits, spaces, ’.’, ’-’, ’_’ symbols and
cannot contain trailing or leading spaces.

path A directory relative to the project root to write objects to.

extension File extension (string) without the leading dot.

prefix, suffix (optional) strings to attach at the beginning or at the end of file names.

Value

A tibble in which each row represents an object from the input list, comprising the following
columns:

• object - objects you’ve provided

• name - contains paths where objects are meant to be written.

Examples

cloud_object_ls(
dplyr::lst(mtcars = mtcars, iris = iris),
path = "data",
extension = "csv",
prefix = "df_"

)

cloud_read_excel 17

cloud_read_excel Read excel file as a list of dataframes

Description

Uses readxl::read_excel under the hood, reads all sheets and returns them as a named list of dataframes.

Usage

cloud_read_excel(path)

Arguments

path Path to the xlsx/xls file.

Value

A named list of dataframes, where each dataframe corresponds to a sheet in the Excel file. The
names of the list elements are derived from the sheet names.

Examples

datasets <- readxl::readxl_example("datasets.xlsx")
cloud_read_excel(datasets)

cloud_s3_attach Attach S3 folder to project

Description

This function facilitates the association of a specific S3 folder with a project by adding a unique
identifier to the project’s DESCRIPTION file. The user is prompted to navigate to the S3 console,
select or create the desired folder for the project, and then provide its URL. The function extracts
the necessary information from the URL and updates the cloudfs.s3 field in the DESCRIPTION
file accordingly.

Usage

cloud_s3_attach(project = ".")

Arguments

project Character. Path to a project. By default it is current working directory.

18 cloud_s3_browse

Value

This function does not return a meaningful value but modifies the DESCRIPTION file of the speci-
fied project to include the S3 folder path.

Examples

cloud_s3_attach()

cloud_s3_browse Browse project’s S3 folder

Description

Opens project’s S3 folder in browser.

Usage

cloud_s3_browse(path = "", root = NULL)

Arguments

path (optional) Path inside the S3 folder to open. Defaults to the root level (path =
"") of the project’s S3 folder.

root S3 path of the project root. This serves as the reference point for all relative
paths. When left as NULL, the root is automatically derived from the cloudfs.s3
field of the project’s DESCRIPTION file.

Value

Invisibly returns NULL. The primary purpose of this function is its side effect: opening the specified
S3 folder in a browser.

Examples

cloud_s3_browse()
cloud_s3_browse("data")

cloud_s3_download 19

cloud_s3_download Download a file from S3 to the local project folder

Description

Retrieves a file from the project’s S3 root folder and saves it to the local project folder, maintaining
the original folder structure.

Usage

cloud_s3_download(file, root = NULL)

Arguments

file Path to a file relative to project folder root. Can contain only letters, digits, ’-’,
’_’, ’.’, spaces and ’/’ symbols.

root S3 path of the project root. This serves as the reference point for all relative
paths. When left as NULL, the root is automatically derived from the cloudfs.s3
field of the project’s DESCRIPTION file.

Value

Invisibly returns NULL after successfully downloading the file.

Examples

downloads toy_data/demo.csv from project's S3 folder (provided it exists)
and saves it to local 'toy_data' folder
cloud_s3_download("toy_data/demo.csv")

clean up
unlink("toy_data", recursive = TRUE)

cloud_s3_download_bulk

Bulk Download Contents from S3

Description

Downloads multiple files from an S3 folder based on the output dataframe from cloud_s3_ls. This
function streamlines the process of downloading multiple files by allowing you to filter and select
specific files from the S3 listing and then download them in bulk.

Usage

cloud_s3_download_bulk(content, quiet = FALSE, root = NULL)

20 cloud_s3_ls

Arguments

content (data.frame) Output of cloud_s3_ls()

quiet All caution messages may be turned off by setting this parameter to TRUE.

root S3 path of the project root. This serves as the reference point for all relative
paths. When left as NULL, the root is automatically derived from the cloudfs.s3
field of the project’s DESCRIPTION file.

Value

Invisibly returns the input content dataframe.

Examples

provided there's a folder called "toy_data" in the root of your project's
S3 folder, and this folder contains "csv" files
cloud_s3_ls("toy_data") |>

filter(type == "csv") |>
cloud_s3_download_bulk()

clean up
unlink("toy_data", recursive = TRUE)

cloud_s3_ls List Contents of Project’s S3 Folder

Description

Returns a tibble with names, timestamps, and sizes of files and folders inside the specified S3 folder.

Usage

cloud_s3_ls(path = "", recursive = FALSE, full_names = FALSE, root = NULL)

Arguments

path (optional) Path inside the S3 folder. Specifies the subfolder whose contents
should be listed. By default, when path = "", lists root-level files and folders.

recursive (logical) If TRUE, lists contents recursively in all nested subfolders. Default is
FALSE.

full_names (logical) If TRUE, folder path is appended to object names to give a relative file
path.

root S3 path of the project root. This serves as the reference point for all relative
paths. When left as NULL, the root is automatically derived from the cloudfs.s3
field of the project’s DESCRIPTION file.

cloud_s3_read 21

Value

A tibble containing the names, last modification timestamps, and sizes in bytes of files and folders
inside the specified S3 folder.

Examples

list only root-level files and folders
cloud_s3_ls()

list all files in all nested folders
cloud_s3_ls(recursive = TRUE)

list contents of "plots/barplots" subfolder
cloud_s3_ls("plots/barplots")

cloud_s3_read Read a file from S3

Description

Retrieves and reads a file from the project’s S3 folder. By default, the function attempts to determine
the appropriate reading function based on the file’s extension. However, you can specify a custom
reading function if necessary.

Usage

cloud_s3_read(file, fun = NULL, ..., root = NULL)

Arguments

file Path to a file relative to project folder root. Can contain only letters, digits, ’-’,
’_’, ’.’, spaces and ’/’ symbols.

fun A custom reading function. If NULL (default), the appropriate reading function
will be inferred based on the file’s extension.

... Additional arguments to pass to the reading function fun.

root S3 path of the project root. This serves as the reference point for all relative
paths. When left as NULL, the root is automatically derived from the cloudfs.s3
field of the project’s DESCRIPTION file.

Value

The content of the file read from S3, with additional attributes containing metadata about the file.

22 cloud_s3_read_bulk

Default reading functions

Here’s how we identify a reading function based on file extension

• .csv: readr::read_csv

• .json: jsonlite::read_json

• .rds: base::readRDS

• .sav: haven::read_sav

• .xls: cloud_read_excel

• .xlsx: cloud_read_excel

• .xml: xml2::read_xml

Examples

provided there are folders called "data" and "models" in the root of your
project's main S3 folder and they contain the files mentioned below
cloud_s3_read("data/mtcars.csv")
cloud_s3_read("models/random_forest.rds")
cloud_s3_read("data/dm.sas7bdat", fun = haven::read_sas)

cloud_s3_read_bulk Bulk Read Contents from S3

Description

This function facilitates the bulk reading of multiple files from the project’s designated S3 folder.
By using cloud_s3_ls, you can obtain a dataframe detailing the contents of the S3 folder. Applying
cloud_s3_read_bulk to this dataframe allows you to read all listed files into a named list. The
function will, by default, infer the appropriate reading method based on each file’s extension. How-
ever, if a specific reading function is provided via the fun parameter, it will be applied uniformly to
all files, which may not be suitable for diverse file types.

Usage

cloud_s3_read_bulk(content, fun = NULL, ..., quiet = FALSE, root = NULL)

Arguments

content (data.frame) Output of cloud_s3_ls()

fun A custom reading function. If NULL (default), the appropriate reading function
will be inferred based on the file’s extension.

... Additional arguments to pass to the reading function fun.

quiet All caution messages may be turned off by setting this parameter to TRUE.

root S3 path of the project root. This serves as the reference point for all relative
paths. When left as NULL, the root is automatically derived from the cloudfs.s3
field of the project’s DESCRIPTION file.

cloud_s3_upload 23

Value

A named list where each element corresponds to the content of a file from S3. The names of the list
elements are derived from the file names.

Examples

provided there's a folder called "data" in the root of the project's main
S3 folder, and it contains csv files
data_lst <-

cloud_s3_ls("data") |>
filter(type == "csv") |>
cloud_s3_read_bulk()

cloud_s3_upload Upload a local file to S3

Description

Uploads a local file from the project’s directory to its corresponding location within the project’s S3
root folder.

Usage

cloud_s3_upload(file, root = NULL)

Arguments

file Path to a file relative to project folder root. Can contain only letters, digits, ’-’,
’_’, ’.’, spaces and ’/’ symbols.

root S3 path of the project root. This serves as the reference point for all relative
paths. When left as NULL, the root is automatically derived from the cloudfs.s3
field of the project’s DESCRIPTION file.

Value

Invisibly returns NULL after successfully uploading the file.

Examples

create a toy csv file
dir.create("toy_data")
write.csv(mtcars, "toy_data/mtcars.csv")

uploads toy_data/mtcars.csv to 'data' subfolder of project's S3 folder
cloud_s3_upload("toy_data/mtcars.csv")

24 cloud_s3_upload_bulk

clean up
unlink("toy_data", recursive = TRUE)

cloud_s3_upload_bulk Bulk Upload Files to S3

Description

This function facilitates the bulk uploading of multiple files from the local project folder to the
project’s designated S3 folder. By using cloud_local_ls, you can obtain a dataframe detailing the
contents of the local folder. Applying cloud_s3_upload_bulk to this dataframe allows you to
upload all listed files to S3.

Usage

cloud_s3_upload_bulk(content, quiet = FALSE, root = NULL)

Arguments

content (data.frame) Output of cloud_s3_ls()

quiet All caution messages may be turned off by setting this parameter to TRUE.

root S3 path of the project root. This serves as the reference point for all relative
paths. When left as NULL, the root is automatically derived from the cloudfs.s3
field of the project’s DESCRIPTION file.

Value

Invisibly returns the input content dataframe.

Examples

create toy plots: 2 png's and 1 jpeg
dir.create("toy_plots")
png("toy_plots/plot1.png"); plot(rnorm(100)); dev.off()
png("toy_plots/plot2.png"); plot(hist(rnorm(100))); dev.off()
png("toy_plots/plot3.jpeg"); plot(hclust(dist(USArrests), "ave")); dev.off()

upload only the two png's
cloud_local_ls("toy_plots") |>

dplyr::filter(type == "png") |>
cloud_s3_upload_bulk()

clean up
unlink("toy_plots", recursive = TRUE)

cloud_s3_write 25

cloud_s3_write Write an object to S3

Description

Saves an R object to a designated location in the project’s S3 storage. If no custom writing function
is specified, the function will infer the appropriate writing method based on the file’s extension.

Usage

cloud_s3_write(x, file, fun = NULL, ..., local = FALSE, root = NULL)

Arguments

x An R object to be written to S3.
file Path to a file relative to project folder root. Can contain only letters, digits, ’-’,

’_’, ’.’, spaces and ’/’ symbols.
fun A custom writing function. If NULL (default), the appropriate writing function

will be inferred based on the file’s extension.
... Additional arguments to pass to the writing function fun.
local Logical, defaulting to FALSE. If TRUE, the function will also create a local copy

of the file at the specified path. Note that some writing functions might not over-
write existing files unless explicitly allowed. Typically, such functions have a
parameter (often named overwrite) to control this behavior. Check the docu-
mentation of the writing function used to determine the exact parameter name
and pass it through the ... argument if necessary. Alternatively, you can define
an anonymous function for fun that calls a writing function with the overwriting
option enabled.

root S3 path of the project root. This serves as the reference point for all relative
paths. When left as NULL, the root is automatically derived from the cloudfs.s3
field of the project’s DESCRIPTION file.

Value

Invisibly returns NULL after successfully writing the object to S3.

Default writing functions

Here’s how we identify a writing function based on file extension

• .csv: readr::write_csv
• .json: jsonlite::write_json
• .rds: base::saveRDS
• .xls: writexl::write_xlsx
• .xlsx: writexl::write_xlsx
• .sav: haven::write_sav
• .xml: xml2::write_xml

26 cloud_s3_write_bulk

Examples

write mtcars dataframe to mtcars.csv in data folder
cloud_s3_write(mtcars, "data/mtcars.csv")
cloud_s3_write(random_forest, "models/random_forest.rds")

provide custom writing function with parameters
cloud_s3_write(c("one", "two"), "text/count.txt", writeLines, sep = "\n\n")

cloud_s3_write_bulk Write multiple objects to S3 in bulk

Description

This function allows for the bulk writing of multiple R objects to the project’s designated S3 folder.
To prepare a list of objects for writing, use cloud_object_ls, which generates a dataframe listing the
objects and their intended destinations in a format akin to the output of cloud_s3_ls. By default, the
function determines the appropriate writing method based on each file’s extension. However, if a
specific writing function is provided via the fun parameter, it will be applied to all files, which may
not be ideal if dealing with a variety of file types.

Usage

cloud_s3_write_bulk(
content,
fun = NULL,
...,
local = FALSE,
quiet = FALSE,
root = NULL

)

Arguments

content (data.frame) output of cloud_object_ls()

fun A custom writing function. If NULL (default), the appropriate writing function
will be inferred based on the file’s extension.

... Additional arguments to pass to the writing function fun.

local Logical, defaulting to FALSE. If TRUE, the function will also create a local copy
of the file at the specified path. Note that some writing functions might not over-
write existing files unless explicitly allowed. Typically, such functions have a
parameter (often named overwrite) to control this behavior. Check the docu-
mentation of the writing function used to determine the exact parameter name
and pass it through the ... argument if necessary. Alternatively, you can define
an anonymous function for fun that calls a writing function with the overwriting
option enabled.

cloud_s3_write_bulk 27

quiet all caution messages may be turned off by setting this parameter to TRUE.

root S3 path of the project root. This serves as the reference point for all relative
paths. When left as NULL, the root is automatically derived from the cloudfs.s3
field of the project’s DESCRIPTION file.

Value

Invisibly returns the input content dataframe.

Examples

write two csv files: data/df_mtcars.csv and data/df_iris.csv
cloud_object_ls(

dplyr::lst(mtcars = mtcars, iris = iris),
path = "data",
extension = "csv",
prefix = "df_"

) |>
cloud_s3_write_bulk()

Index

base::readRDS, 7, 22
base::saveRDS, 12, 25

cloud_drive_attach, 2
cloud_drive_browse, 3
cloud_drive_download, 4
cloud_drive_download_bulk, 5
cloud_drive_ls, 5, 5, 8, 13
cloud_drive_read, 6
cloud_drive_read_bulk, 8
cloud_drive_spreadsheet_autofit, 9
cloud_drive_upload, 9
cloud_drive_upload_bulk, 10
cloud_drive_write, 11
cloud_drive_write_bulk, 13
cloud_get_roots, 14
cloud_local_ls, 10, 15, 24
cloud_object_ls, 13, 16, 26
cloud_read_excel, 7, 17, 22
cloud_s3_attach, 17
cloud_s3_browse, 18
cloud_s3_download, 19
cloud_s3_download_bulk, 19
cloud_s3_ls, 16, 19, 20, 22, 26
cloud_s3_read, 21
cloud_s3_read_bulk, 22
cloud_s3_upload, 23
cloud_s3_upload_bulk, 24
cloud_s3_write, 25
cloud_s3_write_bulk, 26

googledrive::dribble, 10, 12
googlesheets4::range_autofit(), 9

haven::read_sav, 7, 22
haven::write_sav, 12, 25

jsonlite::read_json, 7, 22
jsonlite::write_json, 12, 25

readr::read_csv, 7, 22

readr::write_csv, 12, 25
readxl::read_excel, 17

writexl::write_xlsx, 12, 25

xml2::read_xml, 7, 22
xml2::write_xml, 12, 25

28

	cloud_drive_attach
	cloud_drive_browse
	cloud_drive_download
	cloud_drive_download_bulk
	cloud_drive_ls
	cloud_drive_read
	cloud_drive_read_bulk
	cloud_drive_spreadsheet_autofit
	cloud_drive_upload
	cloud_drive_upload_bulk
	cloud_drive_write
	cloud_drive_write_bulk
	cloud_get_roots
	cloud_local_ls
	cloud_object_ls
	cloud_read_excel
	cloud_s3_attach
	cloud_s3_browse
	cloud_s3_download
	cloud_s3_download_bulk
	cloud_s3_ls
	cloud_s3_read
	cloud_s3_read_bulk
	cloud_s3_upload
	cloud_s3_upload_bulk
	cloud_s3_write
	cloud_s3_write_bulk
	Index

